Photophysical properties of various photoswitchable molecules, including whether the fluorophore can be cycled between bright and dark states multiple times, absorption and emission peaks (λabs/λem), and molar absorption coefficient (ɛmax), fluorescence quantum yield (ΦF), photoconversion quantum yield (ΦP), turn-on ratio, photobleaching quantum yield (ΦB), and total photons emitted (Ntot,e). All values are reported for the photoconverted form except photoconversion quantum yield. (From Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Conley, N. R.; Moerner, W. E. Molecules and methods for super-resolution imaging. Methods Enzymol. 2010, 475, 27–59. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3216693/)  

 

Reversible?a

λabs/λem

(nm)

ɛmax

(M− 1 cm− 1)

ΦF

ΦP

Turn-on

ratiob

ΦB

Ntot,e

DCDHF-V-P-azide1,2

No

570/613

54,100

0.025–0.39c

Good

(0.0059)

Excellent

(325–1270)d

4.1 × 10–6

2.3 × 106

DCDHF-V-PF4-azide2 3

No

463/578

20,000

0.0062+

Very good

(0.017)

 

9.2 × 10–6

 

DCM-azide2

No

456/599

31,100

0.18

Excellent

(0.085)

 

6.2 × 10–6

 

Cy3/Cy5 + thiol4-7

Yes

647/662

200,000

0.18

Very good

Excellent

(˛ 1000)e

 

~670,000

PC-RhB8,9

Yes

552/580

110,000

0.65

Moderate

 

 

~600,000

EYFP7,10-15

Yes

514/527

83,400

0.61

Moderate

(1.6×10–6)

Moderate

5.5 × 10–5

~140,000

PAGFP13,15,16

No

504/517

17,400

0.79

Moderate

(1.1×10–6)

Moderate

(100)

~6 × 10–5

~140,000

mEosFP15,17,18

No

559/581

37,000

0.62

Good

(1.6×10–5)

Very good

3.0 × 10–5

21,000

PAmCherry119

No

564/595

18,000

0.46

Moderate

(identical to PAGFP)

Excellent

(200–4000)

 

 

Dendra219-21

No

553/573

35,000

0.55

 

Moderate

(47)

 

 

Kaede21,22

No

572/582

60,000

0.33

Moderate

(~10–4)f

Moderate

(28)

 

 

mOrange1/221,23

No

615/640

 

 

 

Poor

(16)

 

 

Dronpa24,25

Yes

503/518

95,000

0.85

Very good

 

~ 3 × 10–5

 

 

a) Some fluorophores listed as irreversible may be reversible, but have yet to be reported as such.

b) Ratio of the fluorescence after and before photoactivation (see definition in text). Some papers report a Ňcontrast ratioÓ of red to green fluorescence, which is the product of the n-fold increase in red fluorescence and n-fold decrease in the green fluorescence;21 therefore, those reported contrasts are many times higher than the turn-on ratio, which is the relevant parameter for super-resolution imaging. Other papers report Ňcontrast ratiosÓ without definition, so we cannot confidently compare these values directly to turn-on ratio.

c) DCDHFs become brighter when rigidified.26,27

d) This range corresponds to (Reff−R).

e) In the SI of reference 6 is reported only 0.1% spontaneous turn-on at ideal conditions (e.g., very high thiol and oxygen-scavenger concentrations). This value does not take into account the inherent on–off ratio of a single Cy5, so it is an upper limit.

f) Value estimated from photoconversion wavelengths, intensities, times, and spectra reported previously.22

 

   

(1)               Lord, S. J.; Conley, N. R.; Lee, H.-L. D.; Samuel, R.; Liu, N.; Twieg, R. J.; Moerner, W. E. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc 2008, 130, 9204–9205.

(2)               Lord, S. J.; Lee, H.-L. D.; Samuel, R.; Weber, R.; Liu, N.; Conley, N. R.; Thompson, M. A.; Twieg, R. J.; Moerner, W. E. Azido push-pull fluorogens photoactivate to produce bright fluorescent labels. J Phys Chem B 2010, 114, 14157–14167.

(3)               Pavani, S. R. P.; Thompson, M. A.; Biteen, J. S.; Lord, S. J.; Liu, N.; Twieg, R. J.; Piestun, R.; Moerner, W. E. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. P Natl Acad Sci USA 2009, 106, 2995–2999.

(4)               Conley, N. R.; Biteen, J. S.; Moerner, W. E. Cy3-Cy5 Covalent Heterodimers for Single-Molecule Photoswitching. J Phys Chem B 2008.

(5)               Bates, M.; Blosser, T. R.; Zhuang, X. Short-Range Spectroscopic Ruler Based on a Single-Molecule Optical Switch. Phys Rev Lett 2005, 94, 4.

(6)               Huang, B.; Jones, S. A.; Brandenburg, B.; Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Meth 2008, 5, 1047–1052.

(7)               Schmidt, T.; Kubitscheck, U.; Rohler, D.; Nienhaus, U. Photostability Data for Fluorescent Dyes: An Update. Single Molecules 2002, 3.

(8)               Soper, S.; Nutter, H.; Keller, R.; Davis, L.; Shera, E. The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. Photochemistry and Photobiology 1993, 57, 972–977.

(9)               Fšlling, J.; Belov, V. N.; Kunetsky, R.; Medda, R.; Schšnle, A.; Egner, A.; Eggeling, C.; Bossi, M. L.; Hell, S. W. Photochromic Rhodamines Provide Nanoscopy with Optical Sectioning. Angew. Chem. 2007, 119, 6382–6386.

(10)            Biteen, J. S.; Thompson, M. A.; Tselentis, N. K.; Bowman, G. R.; Shapiro, L.; Moerner, W. E. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Meth 2008, 5, 947–949.

(11)            Tsien, R. Y. The green fluorescent protein. Annu Rev Biochem 1998, 67, 509–544.

(12)            Dickson, R. M.; Cubitt, A. B.; Tsien, R. Y.; Moerner, W. E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 1997, 388, 355–358.

(13)            Harms, G. S.; Cognet, L.; Lommerse, P. H.; Blab, G. A.; Schmidt, T. Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J 2001, 80, 2396–2408.

(14)            Biteen, J. S.; Thompson, M.; Tselentis, N.; Shapiro, L. Superresolution imaging in live Caulobacter crescentus cells using photoswitchable enhanced yellow fluorescent protein. Proceedings of SPIE 2009.

(15)            Gunewardene, M. S.; Hess, S. T. Single Molecule Biophysics - II: Photoactivation yields and bleaching yield measurements for PA-FPs. Biophys J 2008, 94, 840–848.

(16)            Patterson, G.; Day, R. N.; Piston, D. Fluorescent protein spectra http://jcs.biologists.org/content/114/5/837/suppl/DC1 (accessed Aug. 16, 2012).

(17)            Shroff, H.; Galbraith, C. G.; Galbraith, J. A.; White, H.; Gillette, J.; Olenych, S.; Davidson, M. W.; Betzig, E. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. P Natl Acad Sci USA 2007, 104, 20308–20313.

(18)            Wiedenmann, J.; Ivanchenko, S.; Oswald, F.; Schmitt, F.; Ršcker, C.; Salih, A.; Spindler, K.-D.; Nienhaus, G. U. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. P Natl Acad Sci USA 2004, 101, 15905–15910.

(19)            Subach, F.; Patterson, G. H.; Manley, S.; Gillette, J.; Lippincott-Schwartz, J.; Verkhusha, V. V. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Meth 2009.

(20)            Chudakov, D. M.; Lukyanov, S.; Lukyanov, K. A. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2007, 2, 2024–2032.

(21)            Kremers, G.-J.; Hazelwood, K. L.; Murphy, C. S.; Davidson, M. W.; Piston, D. W. Photoconversion in orange and red fluorescent proteins. Nat Meth 2009, 6, 355–358.

(22)            Ando, R.; Hama, H.; Yamamoto-Hino, M.; Mizuno, H.; Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. P Natl Acad Sci USA 2002, 99, 12651–12656.

(23)            Shaner, N. C.; Campbell, R. E.; Steinbach, P. A.; Giepmans, B. N. G.; Palmer, A. E.; Tsien, R. Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004, 22, 1567–1572.

(24)            Ando, R.; Mizuno, H.; Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 2004, 306, 1370–1373.

(25)            Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki, A.; Hofkens, J. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. P Natl Acad Sci USA 2005, 102, 9511–9516.

(26)            Lord, S. J.; Conley, N. R.; Lee, H.-L. D.; Nishimura, S. Y.; Pomerantz, A. K.; Willets, K. A.; Lu, Z.; Wang, H.; Liu, N.; Samuel, R.; Weber, R.; Semyonov, A. N.; He, M.; Twieg, R. J.; Moerner, W. E. DCDHF fluorophores for single-molecule imaging in cells. ChemPhysChem 2009, 10, 55–65.

(27)            Willets, K. A.; Nishimura, S. Y.; Schuck, P. J.; Twieg, R. J.; Moerner, W. E. Nonlinear optical chromophores as nanoscale emitters for single-molecule spectroscopy. Acc Chem Res 2005, 38, 549–556.